
Android architecture:
attacking the weak points

Much of this stems from Google’s desire
to create a platform that is relatively open
– relative, that is, to Apple’s ‘walled garden’
for iOS. By eschewing rigid control,
Google has created an environment that is
highly attractive to many developers, app
vendors and users (especially those of the
geek persuasion). But the openness and
flexibility have also introduced weak points
that are being mercilessly exploited. In
this second article in our series of three on
Android security, we’ll look more closely at
the platform.

Fragmentation issues
Many of the exploits we see on Android
work only on older versions of the
operating system – but that’s not a
problem for the bad guys. The fact
is that it’s a notoriously fragmented
user base. Developers occasionally
complain about the complicating
factors such as a wide variety of screen
resolutions and sizes. These problems
stem from the large number of vendors
producing devices to no particular
hardware standards. But, from a security
perspective, the biggest issue is the range
of OS versions in current use.

Many of the trojanised apps that
Google has been forced to remove
from its Play marketplace – and which
continue to pop up in less rigorously
policed third-party app stores – exploited
vulnerabilities that had been fixed in the
versions of Android that were already
current when the malware was released.
In fact, the malicious apps would only
work on OS versions that were (by tech

standards) considerably out of date. Yet
because manufacturers were still pushing
out products with those old versions,
and because such a large percentage of
users never get around to upgrading, the
malware was able to be highly effective.
The cyber-criminals simply don’t need
to care that they haven’t found exploits
for the current OS. To some people,
this might sound depressingly similar to
the way so many users have held onto
insufficiently patched installations of
Windows XP while ignoring the charms
of Vista and Windows 7.

While Jelly Bean (version 4.1) is the
most current version, only 1.8% of
devices are using it (as on 1 Oct 2012).1

Indeed, only a minority (23.7%) of
device manufacturers have made it as far
as Ice Cream Sandwich (4.0). Google
officially unveiled Jelly Bean in late
June 2012, with the firm’s own device,
the Nexus 7, being the first to run it.
But the company is not in control of
how updates are pushed out to most
users – that’s in the hands of handset
vendors and/or mobile service operators.
Samsung started its Jelly Bean roll-out in
Europe – starting with Poland – at the
end of September 2012. But this is for
a limited range of devices and even then
would not reach users whose mobile
operators have chosen, for one reason or
another, not to promulgate the update.
Other vendors are also rolling out the
update, but again to limited ranges of
devices and in a very sporadic fashion.
Many devices will not be able to run the
new version of the OS.

FEATURE

October 2012 Network Security
5

Steve Mansfield-
Devine

Figure 1: Android versions in use, as of 1 Oct 2012. Source: Google.

Steve Mansfield-Devine, editor, Network Security

It may not just be its popularity that has made Android a target for attackers
and cyber-criminals. It’s arguable that the very nature of the platform lends
itself to manipulation and subversion. There are purely technical issues, such
as the way communications between apps are handled. And there are problems
with the ecosystem – not least how the OS gets updated and potential issues in
the future with advertising.

FEATURE

6
Network Security October 2012

Multiple points of delay

There are multiple points at which an
OS upgrade can be delayed or prevented.
For example, as this article was being
written, UK mobile operator O2
announced that customers with certain
Sony Xperia handsets – the Neo, Arc and
Ray models – would not be updated to

Android 4.0 ICS because of performance
issues. “These issues were present on
three separate versions of the Android 4.0
software we tested and are caused by the
software having more advanced hardware
requirements than previous versions,”
the company said. “Because the software
affects the phone’s performance in this
way and because you can’t revert back
to an earlier version of Android without
having your phone completely restored,
we have decided not to approve the
update.” Users of these handsets with this
operator are now faced with the prospect
of having to root their phones if they
want to upgrade, in order to bypass the
operator. And that’s to get to a level of
Android that is still one version old.

The problem isn’t confined to
updating to new versions of the OS:
vendors and mobile operators are
also somewhat slow and inconsistent
when it comes to pushing out patches.
Duo Security recently launched the
X-Ray, which scans devices for known
vulnerabilities, and early reports from
devices reporting back suggests that half
of Android devices have unpatched flaws
that can be readily exploited.2

Security firm Lookout did research
that suggested that the time taken for
50% of Android users to patch their
handsets was eight to 10 months. This
‘half-life’ varied from one vulnerability
to the next: half of users had patched

against the Exploid rootkit within 42
weeks of the patch being available, while
it was ‘only’ 30 weeks for WebKit NaN
(CVE-2010-1807).3 In fact, a significant
proportion of users are more likely to
buy a new device before they upgrade to
a new version of the OS or even patch.

Stark contrast with iOS
All of this contrasts starkly with iOS. In
June 2012, at a developers conference,
Apple claimed that over 80% of iPhone
and iPad users were running iOS 5,
which was then the most up-to-date
version of the mobile OS. And that’s
actually a much lower figure than some
other organisations were seeing. David
Smith, who produces a number of iOS
apps, publishes stats on his blog showing
the iOS versions of people downloading
his software.4 As of 2 Oct 2012, more
than 90% were using iOS 5 or iOS 6.
And these figures mask the fact that
many users of older devices, such as
the iPhone 3G, couldn’t adopt the new
version. So the figure for users of later
devices is probably much higher.

“Android is particularly popular
among geeks. This is a user
base that is not afraid to
bypass restrictions and security
features”

The recently launched iOS 6 saw an
even more rapid uptake than iOS 5.
Apple claimed that by the end of the
weekend on which it was released, 100
million devices were running the new
OS.5 One app developer reported that
60% of traffic to its servers was coming
from iOS6 devices within a week of the
launch. Virtually all of the rest was from
the most up-to-date version of iOS 5
and the tiny amount of other traffic was
largely from older versions of iOS 5.

The rapid uptake is partly due to
the enticement of new features in the
latest version. Also, iTunes is configured
by default to check for updates and
encourages users to patch. This is much
easier to do from within Apple’s ‘walled
garden’ in which all users employ
common software. However, not
everyone uses iTunes for updates: with

Figure 2: X-Ray from Duo Security on a device
running Android 2.3 – showing it is vulnerable
to two known exploits.

Figure 3: Versions of Apple’s iOS currently in use. Source: David Smith.

iOS 5, Apple adopted Over The Air
(OTA) patching, making it even easier
and more likely that users will update.
That said, research by mobile security
firm Mobilisafe claimed that, while the
OS might be up to date, 56% of the iOS
devices it saw were running out-of-date
firmware.6

Root users
While the majority of infections
happen as a result of users downloading
trojanised apps – often compromised or
fake versions of genuine and sometimes
well-known titles – another key vector is
the trojanised ROM.

Android is particularly popular among
geeks. This is a user base that is not afraid
to bypass restrictions and security features
to gain full access to the platform. (For
the sake of balance, it’s worth pointing
out that Apple iPhone users are also quite
keen to ‘jailbreak’ their systems in order
to use alternative sources of apps.) Such
users will frequently ‘root’ their devices,
allowing superuser access to the operating
system. This also opens the devices to the
risk of malicious software being able to
escalate privileges more easily.

Re-ROMing is also common. Many
Android devices are delivered with ROM-
based software in which the vendor (often
the mobile network operator) has added
its own, heavily branded user interface,
additional software and so on. This is
regarded as intrusive ‘bloatware’ by many
users who prefer the unadorned Android
OS. Downloading new ROM software,
which is then written into non-volatile
Flash memory, is therefore very common.
But little of this software comes from
verifiable or trusted sources and it is
difficult for users to be sure the ROM
software has not been compromised.

Permissions model
Android’s Linux roots are evident in the
permissions model it uses to provide
core security features.7 Every app on an
Android device runs as a separate ‘user’
account – for example, ‘app_1’, ‘app_2’
etc – with a unique User ID (UID)
and Group ID (GID). (This contrasts
with the iOS model in which all apps

share the same UID but are sandboxed.)
Each app may also belong to other
groups depending on the permissions
granted by the user – the app requests
these permissions the first time it is run,
although many users will simply ‘click
through’ this step. This is especially
true of the Internet permission, as most
people will simply assume the app
needs this for updating, access to online
services and so on.

“Any malicious code will only
have the permissions of the
exploited app. Escalating
privileges requires exploiting
the kernel, which is a much
tougher proposition”

This is the main ‘sandboxing’ method.
For the most part, then, any given app
is unable to access the files of the other
apps because it doesn’t have the necessary
read, write or execute permissions. There
are a few exceptions in which processes
run with shared UIDs, but these are
very limited. This provides application
resource isolation – each app has its own
directories for data, preference settings,
caches and databases. Each app also
has a manifest file – AndroidManifest.

xml – that defines configuration and
security settings. It is possible for an
app to write data to its own directory
but set the file permissions to ‘world
readable’. This subverts the sandboxing
model and is regarded as bad practice,
but it does happen, particularly with less
experienced developers.

With apps running native code,
there’s always the potential for memory
corruption vulnerabilities, such as buffer
overflows. But any malicious code that
gets run by exploiting such a vulnerability
will only have the permissions of the
exploited app. Escalating privileges –
ie, getting root – requires exploiting
the kernel, which is a much tougher
proposition. The kernel and main system
files – including libraries, application
runtime, application framework and
system applications – are kept in a
separate, read-only partition.

Apps have access to only a limited
number of system resources by default.
Some capabilities deliberately have no
API – for example, manipulating the
SIM card. Other functions, that do
have APIs, require that the user gives
permission for an app to access them.
These include:

The app also needs to declare its
requirement for these capabilities in its
manifest.

However, any app can see verbose
system info, regardless of permissions
assigned to it. This includes a list of
installed apps, platform/device info and
device identity info (IMEI, IMSI, phone
number). This is information that could
be used by a malicious app to profile
a device in order to work out if it has,
for example, exploitable software, or for
tracking the user.

Any app can also read the contents
of any SD card present because world-
readable permissions are automatically
given to any file written to the card.
Developers, unaware of this, often use
the SD card for data storage. A malicious
app could upload photos, videos,

FEATURE

October 2012 Network Security
7

Figure 4: An app (in this case, Maps)
requesting permissions from the user the
first time it is run.

FEATURE

8
Network Security October 2012

documents and so on – all it needs is
Internet permission.

During development, apps are set
to be debuggable. Many developers
forget to set ‘debuggable=false’ in the
manifest when releasing the app. This
allows a malicious app to pose as a
debugger and get the app to do things

it shouldn’t. By opening the @jdwp-
control socket, from an unprivileged
context, any debuggable apps will
connect. Research by Tyrone Erasmus
of MWR Labs, of whom more in a
moment, suggested that 5% of the
apps available in Google Play have the
debugging switch still enabled.

Communicating apps
Unlike multiple users on a normal
Unix system, there are many cases
in which one app needs to talk to
another – for example, when an email
app needs access to an address book.
This capability is provided by the
Inter-Process Communication (IPC)
mechanism, which has four endpoints:

using a custom Linux driver.

processes. These can provide interfaces to
other apps using the Binder mechanism.

the system to resources it requires and
also for notifications.

access to data. Often these run using
SQLite, but even where they don’t,
the content providers commonly
present an interface that supports
standard SQL queries.

The availability of these endpoints
is defined in the app’s manifest,
through the use of the export flag (eg,
export=true) or the use of <intent-filter>.
One problem sometimes inadvertently
run into by developers is that the
content provider endpoint is exported
by default. If this shouldn’t be available
to other apps this has to be explicitly
stated by setting the export flag for that
endpoint to false in the manifest. It’s
very easy to forget (or not know about)
this requirement, with the result that the
endpoint is made available without the
developer ever realising it.

Erasmus at MWR Labs has shown
how the IPC mechanism can be
plundered and exploited. MWR has
developed a discovery framework,
Mercury, that provides a means to
analyse apps for potential data leaks and
vulnerabilities, which Erasmus presented
at Black Hat Europe 2012.8 The chief
reason for following this line of work, he
said at the presentation, is that Android
has, “very interesting attack surfaces.
There’s quite a lot of attack surface in
the way that applications communicate
with each other across the sandbox using
IPC. Also, because it’s good old Linux
there’s always the chance of priv[ilege]
escalating up to root.”

Figure 5: The Android security model, in which apps exchange information using the Inter-Process
Communication (IPC) mechanism.

Figure 6: The Mercury framework. This shows the app providing basic information on apps that
have the word ‘contacts’ in their name.

FEATURE

October 2012 Network Security
9

Cross-application
exploitation
Erasmus’ key interest is in cross-
application exploitation – finding
out what one app can do to another
without needing special privileges.
If a piece of malware can access data
from another app, for example, the
only permission it might need is the
ability to access the Internet, in order to
upload the stolen data to a Command
and Control (C&C) server. As we’ve
mentioned, users will often give apps
Internet access without thinking. The
Mercury framework needs only Internet
permissions and can be seen as a kind of
malware proof-of-concept tool.

“Android is unique,” said Erasmus in
his presentation. “Developers have not,
in my opinion, got a full grasp on it yet
… it’s ripe picking for anyone looking
for vulnerabilities.”

In July 2011, Erasmus found a
vulnerability in Dropbox and wrote a
proof-of-concept exploit that caused
Dropbox to upload its login credential
to its Public folder, which is world-
accessible. He was motivated to write
Mercury because of frustration with
existing approaches. Analysing code for
exploitation often uses a static approach.
For example, the manifest file can be
extracted from apps using standard
Android SDK tools. This allows you to
see entry points into code. You can then
decompile code to at least bytecode or
even recompiled source code to understand
what’s running behind the entry points.
That allows you to write attack code
– which then needs to be tested and
amended. This is a very slow process.

The dynamic approach is to use code
running on the device to analyse flaws
and attempt exploits on the fly. This is
how Mercury works. It makes use of
reusable modules because many apps
share common attack vectors. It runs as
a server on the Android device and you
connect to it using a Python-based client
on a PC. It very quickly provides info
on any app, including the permissions
it was given when installed. It’s also
possible to run filters – eg, to get a quick
list of all apps that have the ‘install
packages’ permission.

During his demonstration of Mercury,
Erasmus used simple commands to find
apps with content provider endpoints
requiring no (null) permissions to read
or write. The tool also allows you to find
apps that leak passwords (sometimes
hard-coded online service passwords in
the manifest), personal data or messages.
For example, an app called IM, which
was provided with a device that Erasmus
tested, leaks instant messages from
Google Talk, Windows Live Messenger
and Yahoo Messenger by allowing you
to read from the app’s database without
needing any privileges. The SocialHub
app similarly leaks messages from social
networking services, including Facebook,
MySpace, Twitter and LinkedIn.

Mercury has a tool to search for
content URIs used by apps, allowing a

researcher to dig deeper and pull content
from the app database. It can do this
because the app binaries are readable
from an unprivileged context. Another
area of vulnerability is logs: by dumping
log information you can sometimes
find data containing information about
emails, SMS messages, phone calls
and so on, both sent and received. In
his presentation, Erasmus also showed
how Mercury can be used to mount
SQL injection attacks against apps’
databases: in one instance, he dumped
the contents of SMS messages. Normally,
SMS requires the android.permission.
READ_SMS permission. But by querying
other authorities in the same package as
the SMS database you may be able to
find other content providers in the same
package that do not require permissions.

Figure 7: The Mercury framework showing information about an app (in this case Evernote),
including permissions, UID and GID, endpoints exported and the contents of the manifest file.
Inset: the Mercury server app running on an Android device.

FEATURE

10
Network Security October 2012

If a single database is shared by multiple
content providers, you can go in via a
provider with null permissions and use
SQL injection.

The storage of various settings is another
weak spot: Erasmus was able to pull from
Settings Storage the SSID and WPA2
password of a portable wifi hotspot.

“While Android theoretically has
a strong permissions model, it is
frequently undermined by how
developers produce their apps”

With no special permissions, using
the Mercury framework (which has no
higher privileges than any other app)
Erasmus was able to show how he could
obtain: email address and password; email
contents; contents of SMS messages;
IM messages and contacts list; social
networking messages; call logs; notes;
current city; portable wifi hotspot
credentials; and contents of the SD
card. With this information, it’s possible
to build a very detailed user profile, as
well as stealing private and important
information.

Most of this info is gleaned from
third-party apps, although many are
very common as they’re installed by
default by OEMs. Also, they show how,
while Android theoretically has a strong
permissions model, it is frequently
undermined by how developers produce
their apps, with content providers
not requiring permissions. In fact,
with nothing more than the Internet
permission, Erasmus showed how it was
easy to open a shell to remote location.
He used the ever-popular Netcat for the
demonstration.

Advertising channels
For all its success on the desktop,
advertising hasn’t yet been used as a major
cybercrime vector on Android, but some
believe it’s ripe for the plucking. The
lack of activity may be down to simple
financial considerations. We saw in the
previous article that cyber-criminals are
guided by a number of factors when
mounting a malware campaign, which
include: the need to remain anonymous;
the low cost of exploitation; and a large

number of targets. To this, you can add
the ability to script.

Although app developers can choose
from a number of advertising services
when it comes to choosing what to
embed in their software, by far the
biggest two are those run by Apple
and Google for their own platforms.
Given that the size of these ad networks
relates directly to the number of targets,
if ad-based malware is going to really
become an issue on mobile platforms it
would probably need to involve Apple’s
iAd or Google’s Admob service. The
Mobile Exploit Intelligence Project
(MEIP) run by Dan Guido of Trail of
Bits and Mike Arpaia at iSEC Partners
compared these as potential malware
channels and the result is instructive.

Joining Apple’s iAd service requires
an up-front payment of $300,000 and
Apple insists on verifying your identity,
so that is two strikes against it as far
as cyber-criminals are concerned. As
it’s HTML5-based, iAd is scriptable,
though. By comparison, joining Admob
simply requires the filling in of an online
form, with no checks, and a payment
of $50. Ads are simple image or text, so
there’s no scope to insert JavaScript –
the ‘exploit’ would be a simple link to
malicious content, probably ruling out
the automatic compromise of systems,
although if the device’s owner has
enabled app installation from ‘Unknown
sources’ (not uncommon) a simple URL
can result in the automatic downloading
of an app. On the whole, Admob looks
highly attractive to cyber-criminals while
iAd is a definite non-runner.

Number of targets
The final issue, then, is the available
number of targets. And this is why
we haven’t seen much in the way
of malicious advertising on mobile
platforms. We’ve already seen that web
browsing doesn’t happen all that much
on smartphones. And when websites
serve special versions of themselves for
mobile users, they generally omit the
ads because of the limited screen space
of mobile devices. Finally, it’s a known
fact that mobile users simply don’t click
advertising links all that much.

So mobile advertising simply isn’t
all that appealing as a malware vector
– yet. The MEIP noted one campaign
– GGTracker, which was used for SMS
fraud. It was released mid-2011 but
hasn’t been repeated since, so it’s possible
it didn’t work well.

“We think [advertising] is mildly
attractive and it may be revisited in the
future but only if the incentives change,”
said MEIP’s Guido.

If it does change, one issue that could
become a serious concern is that ads are
most commonly delivered using third-
party ad libraries. And developers may
not be all that scrupulous in checking
the trustworthiness of the libraries they
use to monetise their apps. Already,
some libraries are the cause of privacy
concerns. An analysis by a team at NC
State found that, of 100,000 apps in
Google Play they tested, 48,139 tracked
the device’s GPS location and 4,190
passed this information to advertisers,
18,575 captured and shared the IMEI
number of the device, and 4,047
captured the user’s phone number.9
Of even greater concern, 297 apps ran
ad code that could, itself, execute code
downloaded over the Internet. This
means that even perfectly innocent apps
could be a conduit for malware.

BitDefender recently noted a large
increase in “aggressive adware” on
Android. By itself, adware – where the
user is bombarded with pop-ups, often
to encourage them to visit (potentially
malicious) websites – doesn’t count as a
compromise of the device. BitDefender
reckons as many as 90% of the free apps
in Google Play contain adware. But a
very large proportion of them – around
75% of free apps – fall into BitDefender’s
‘aggressive’ category where the app may
cause configuration changes to the device
and push notifications in such a way that
performance can degrade. One of the
most common pieces of adware is the
game Ant Smasher, which BitDefender
says has been downloaded more than 50
million times.

App development
Software development is where
security starts, and much could be

FEATURE

October 2012 Network Security
11

done to improve the Android security
landscape by improving the education
of developers and implementing
tighter controls during the application
development lifecycle.

When we turn to Android software
development, there’s more fragmentation
to be found. Development for Android
is mostly done in Java, with perhaps
some C (on iOS, the main language is
Objective-C). But some apps, especially
web-based ones, might also be developed
with the usual mix of HTML, CSS,
JavaScript and Action Script. Further
scripting is possible with Python, Perl,
JRuby, Lua, BeanShell, JavaScript, Tcl
and shell scripts. And it’s even possible
to develop in Visual Basic or C#.
With such a diversity of languages and
platforms, it’s hard to establish the kinds
of procedures and standards that lead to
more secure software.

“He found an astonishing level
of flaws, some of which leaked
critical information and others
which suggested potential for
exploitation”

Poor developer practices, some of
them probably attributable to simple
laziness, are at the root of many
problems. For example, a developer
may decide to have an app ask for
permissions it doesn’t need ‘just in
case’ – perhaps to cut down on the
amount of testing required or to allow
for enhancements or upgrades later. The
problem of excessive permissions is very
common – more than 42% of Android
apps request device access permissions
they don’t actually need, according to
Korean firm AhnLab. Around 39%
of apps demand unnecessary location
information access and 33% want
personal information access.

Researcher Simon Roses of Vulnex,
talking at Black Hat Europe 2012,
revealed details of the 100 or so apps he
had examined, all available in Google
Play.10 He analysed each app for only
about an hour but found an astonishing
level of flaws, some of which leaked critical
information and others which suggested
potential for exploitation, and most of
them due to poor coding. For example,

in a credential manager app, he found the
master password stored in clear text in an
xml preferences file. He also founds apps
– including finance, social networking and
FTP software – with debugging features
enabled, which can result, for example, in
potentially exploitable information being
written to logs. Google’s Bouncer system,
which is supposed to weed out dubious or
faulty apps in Play, doesn’t seem to notice
or flag this.

Some apps Roses examined were
vulnerable to code injection. OWASP has
produced data validation libraries for Java,
Objective-C and so on in its Enterprise
Security ESAPI programme, so there’s
no excuse for errors such as not correctly
validating user input.11 Roses also found
that many apps collect unnecessary
amounts of information, often requesting
permissions they don’t need and
sometimes then storing that information
in insecure ways. He also noted that a lot
of apps use third-party libraries, which is
to be expected – but some of the libraries
are somewhat obscure and developers
can’t be sure what vulnerabilities they
may contain or what the quality of the
code may be. There’s also a question
mark over the suitability of some of the
libraries – he found one finance app that
uses Facebook libraries. This could lead to
baking in unnecessary vulnerabilities and
attack surfaces.

Enterprise apps
Most of the apps that researchers analyse
are publicly available ones, typically from
Google Play. But many organisations
produce their own apps, intended either
for internal use, or sometimes for use by
suppliers, partners or customers.

Veracode, which analyses software for
security issues, has done some research
in this area. Its findings aren’t about
the kinds of flaws being exploited
(although it does test against things like
the OWASP Top 10 or CWE/SANS
top 25 vulnerabilities), but more about
those that may lead to the exploits of
tomorrow. For Android, it found that
the key areas where problems arose were
cryptographic issues (44%), Carriage
Return/Line Feed (CRLF) injection
(28%) and information leakage (10%).

This is based on about 100 apps.
“It looks like Android developers

don’t understand how to use the crypto
APIs well on the platform,” said Chris
Wysopal, Veracode’s CTO presenting
the findings at Black Hat Europe 2012.
“And they’re also baking in a lot of
static crypto keys, which is definitely
a bad idea.”

Top problems were:

tested), meaning no-one’s using
secure random number generation:
“They just don’t get the concept, or
something like that,” said Wysopal.

(42%): “That means that if you have
possession of the binary, you have
possession of the key.” This is something
Veracode sees a lot in Java apps.

data (39%). This might be something
like using a phone number or device
ID as tokens sent in the clear.

messages (6%).
It would help if users were a little

more cautious, too. Just as with desktop
machines, unused or little-used software
presents an unnecessary security risk.
And research by Roses suggests that the
average smartphone user has 65 apps
installed but uses only around 15 in
any given week.

About the author
Steve Mansfield-Devine is a freelance
journalist specialising in infosecurity. He
is the editor of Network Security and also
its sister publication Computer Fraud &
Security.

Coming next…
In the final part of this series, next
month, we’ll be taking a closer
look at Android malware – what
kinds of exploit exist and how they
are delivered. We’ll examine app
distribution channels, and how the
availability of third-party app stores
has contributed to the malware
problem. And we’ll look at some of the
tools and developments that may help
to make Android safer.

FEATURE

12
Network Security October 2012

References

1. ‘Platform versions’. Google. Accessed
2 Oct 2012. http://developer.
android.com/about/dashboards/
index.html.

2. Oberheide, Jon. ‘Early results from
X-Ray: over 50% of Android devices
are vulnerable’. The Duo Bulletin, 12
Sep 2012. Accessed Oct 2012. https://
blog.duosecurity.com/2012/09/early-
results-from-x-ray-over-50-of-android-
devices-are-vulnerable/.

3. Wyatt, Tim. ‘Inside the Android
security patch lifecycle’. Lookout
blog, 4 Aug 2011. Accessed Oct
2012. https://blog.lookout.com/
blog/2011/08/04/inside-the-android-
security-patch-lifecycle/.

4. Smith, David. ‘iOS Version Stats’.
Accessed 2 Oct 2012. david-smith.
org.iosversionstats.

5. Friedman, Lex. ‘Apple: Five million
iPhone 5 sales, 100 million iOS 6’.
Macworld, 24 Sep 2012. Accessed
Oct 2012. www.macworld.com/
article/2010503/apple-five-million-
iphone-5-sales-100-million-ios-6-
upgrades.html.

6. ‘Research shows majority of Apple
iOS devices running outdated
firmware’. InfoSecurity, 7 June
2012. Accessed Aug 2012. www.
infosecurity-magazine.com/
view/26194/research-shows-majority-
of-apple-ios-devices-running-
outdated-firmware/

7. ‘Android Security Overview’. Open

Source Project. Accessed Aug 2012.
http://source.android.com/tech/
security/index.html#android-security-
program-overview.

8. Mercury. MWR Labs. Accessed Oct
2012. http://labs.mwrinfosecurity.
com/tools/2012/03/16/mercury/.

9. Talbot, David. ‘Android ads could
attacks, study warns’. Technology
Review, 19 Mar 2012. Accessed
Aug 2012. www.technologyreview.
com/news/427274/android-ads-
could-attack-study-warns/.

10. Vulnex. Accessed Oct 2012. www.
vulnex.com.

11. ‘Enterprise Security API’. OWASP.
Accessed Oct 2012. https://www.owasp.
org/index.php/Category:OWASP_
Enterprise_Security_API.

Michael Jordon

Cleaning up dirty
disks in the cloud

Many people have grappled with the
challenge of assessing cloud security.
This is a particularly pressing issue for
businesses in sectors such as financial
services, which are most likely to attract
the attention of malicious attackers
with sophisticated tools and extensive
resources at their disposal.

In 2011, Context published research
following its assessment of the security
offered by a number of cloud service
providers.1 This established that some
providers exposed clients’ data to a risk
of compromise as a result of serious
flaws in the implementation of their
technologies. Context has been working
with those providers to resolve the
security issues identified and to establish
best practice in securing similar cloud
environments.

The research focused on services
providing Infrastructure as a Service
(IaaS), which uses virtualisation to
provide computing resources as Virtual
Private Servers (VPSs). These are the
equivalent of separate dedicated physical
servers, but share computing resources
with other VPS nodes. Virtualisation
allows multiple VPS nodes to be hosted
on a single physical machine.

“An attacker could purchase
a cloud node from a provider
which also serves a target
organisation, then could start
looking for a way to launch an
attack on the target’s node”

The conclusion of the report
was that the major security

improvement required was a more
complete separation between nodes.
In a traditional dedicated hosted
environment an attacker needs to break
through the outer firewall, then work
their way through web server, then
application server and so on.

In the cloud, by contrast, all systems
within the virtualised network reside
next to each other. An attacker could
purchase a cloud node from a provider
which also serves a target organisation,
then could start looking for a way to
launch an attack on the target’s node –
present on the same physical machine as
the node purchased by the attacker.

The Context research reviewed
separation of hard disks, memory,
networks, hypervisors (the node operating
systems providing an abstraction interface
between the physical hardware and the
virtual nodes) and remote management.
It discovered that some providers failed
to separate the nodes through the shared

Michael Jordon, Context Information Security

There must be times when cloud service providers rue the day that the term
‘cloud’ was chosen to describe their technologies. ‘Cloud computing’ sounds
light and fresh, a world away from clunky old mainframes, but it also conjures
up negative images for corporate users, making one think of something
windblown, flimsy and vague – while also somehow opaque and mysterious.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
https://blog.duosecurity.com/2012/09/early-results-from-x-ray-over-50-of-android-devices-are-vulnerable/
https://blog.duosecurity.com/2012/09/early-results-from-x-ray-over-50-of-android-devices-are-vulnerable/
https://blog.duosecurity.com/2012/09/early-results-from-x-ray-over-50-of-android-devices-are-vulnerable/
https://blog.duosecurity.com/2012/09/early-results-from-x-ray-over-50-of-android-devices-are-vulnerable/
https://blog.lookout.com/blog/2011/08/04/inside-the-android-security-patch-lifecycle/
https://blog.lookout.com/blog/2011/08/04/inside-the-android-security-patch-lifecycle/
https://blog.lookout.com/blog/2011/08/04/inside-the-android-security-patch-lifecycle/
http://www.macworld.com/article/2010503/apple-five-million-iphone-5-sales-100-million-ios-6-upgrades.html
http://www.macworld.com/article/2010503/apple-five-million-iphone-5-sales-100-million-ios-6-upgrades.html
http://www.macworld.com/article/2010503/apple-five-million-iphone-5-sales-100-million-ios-6-upgrades.html
http://www.macworld.com/article/2010503/apple-five-million-iphone-5-sales-100-million-ios-6-upgrades.html
http://www.infosecurity-magazine.com/view/26194/research-shows-majority-of-apple-ios-devices-running-outdated-firmware/
http://www.infosecurity-magazine.com/view/26194/research-shows-majority-of-apple-ios-devices-running-outdated-firmware/
http://www.infosecurity-magazine.com/view/26194/research-shows-majority-of-apple-ios-devices-running-outdated-firmware/
http://www.infosecurity-magazine.com/view/26194/research-shows-majority-of-apple-ios-devices-running-outdated-firmware/
http://www.infosecurity-magazine.com/view/26194/research-shows-majority-of-apple-ios-devices-running-outdated-firmware/
http://source.android.com/tech/security/index.html#android-security-program-overview
http://source.android.com/tech/security/index.html#android-security-program-overview
http://source.android.com/tech/security/index.html#android-security-program-overview
http://labs.mwrinfosecurity.com/tools/2012/03/16/mercury/
http://labs.mwrinfosecurity.com/tools/2012/03/16/mercury/
http://www.technologyreview.com/news/427274/android-ads-could-attack-study-warns/
http://www.technologyreview.com/news/427274/android-ads-could-attack-study-warns/
http://www.technologyreview.com/news/427274/android-ads-could-attack-study-warns/
http://www.vulnex.com
http://www.vulnex.com
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

	Android architecture: attacking the weak points
	Fragmentation issues
	Multiple points of delay
	Stark contrast with iOS
	Root users
	Permissions model
	Communicating apps
	Cross-application exploitation
	Advertising channels
	Number of targets
	App development
	Enterprise apps
	References

